
MOMENT ANALYSIS FOR REACTfON CT-FROMATOGRAPHY 

The theoretical tnxtment of the elmion proflfe in reaction chromatography by 
the moment analysis technique is presented. The mass bakmcz equations describing 
Iinear chromatography (equilibrium and non-equilibtium) iEvolving multiple phases 
and multiple components are solved by means of the Laplace transform followed by 
t&e projective resolution method. From the sofutions, the zero and the first normal 
moments of the ehn?ion curves for both reactants and products are calculated. 

The use of a chromatographic column as a chemicaf reactor has beer; widely 

applied in bo+J anaIytical and kinetic investigations. EarLier work in this fierd has 
been reviewed by Saha and Math&, Choudiay and Daraisway’, Van Swaa@ and 
BerezkS. The theoretic& aspects of reaction chromato_mphy have a!so b-en con- 
sidered by many workers; KoEi?Tks used the moment analysis technique to elucidate 
the efation profile of reaction chromatography, and ob’ained the zero to fourth sb- 
tistiical moments of the eIniion curve due to a reactant. Nakagaki and Nishino6 and 
Kallen and Heilbronner’ used plate theory in discussing the change of the positions 
and shapes of chromato_gmms due to both reactants and products with regard to 
variations in columns characteristics. AI1 of these workers, however, based their work 
on the idea that the reaction A + B takes place on a single stationary phase, and A 
and B are distributed between the mobife and stationary phases_ However, in practice, 
there can be maay more species of products that are formed from a reactant mofecrrie, 
eZther reversibly or irreversibly and either sfmuItaneously or successively. Also, there 
must be more than two phases that can cor&ibute to the reactioo and the distribrrtion 
of these species; fur instance, the mobile-stationary interphase, stationary liquid-solid 
support interphase and solid support phase. In this paper, we have attempted to obtain 
the moment equations for reaction chromatography involving muWpfe phases and 
muEtipIe components. 

We first consider that reaxt~lnts introduced into a column undergo chemical 
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conversions to yield sevetd types of prqducts and ail of the species present -are distrib- 
~tted between the gs and statioinq phases to estabfkh instantaneous equilibrium. In 
this instance, the following sirmkaneous pvfiaf diEerentia1 equations can be estab- 
!ished : 

where Cl, C2, . . . , C, are the concentrations of f, 2, _ . _, IS species in mobiIe phase, 
respective!y, k,, k,, . . _, k, denote their distribution I&OS, D is eEk&ve diEusion 
coSk5ent ~tich is ccxCked there to Ee con~tzmt for alf species, alzd kii (i, j = I, 
2 , s-m, n) is the rate constant of first order chemical reaction, u is carrier linear velocity, 
t is time and z is column length coordinate. If ihere Is ao sohm Ln the column at f = 
0, and the input distribution of rhe ith species is expressed in the form,ft(r), &rhe initiaf 
and boundary conditions can be given as 

The apptication of matrix representaiorr simplifies eqns. I sod 2 to 

where 

rk,,kx,, _._ kLfiT 
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in wfiicch the exponential part becomes an (n x n) matrix function that can be resolved 

2s described below. If d is given as a regular matrix (1 d 1 = O), its ei~eenvzkes & 
(i’ I, 2, -*-, n), which are distinct from each other, are obtained by solving the 
equation 

$-l.E+O (6) 

where E, is the pith order unit matrix and i 1 deootes a determinant. 
Tfren, with ‘&e aid of projective expression @yEvesfer’s iheoremg), the expo- 

nential tern in eqn. 5 can be written as 



In order to obtaiin the explicit fOiIDS of the statistic& moments from the sointio~ of 
eqn. 4, we ~TKW consider the example ilfustrated in Fig. i, where Cl, C, and C3 are the 
coxeen&ions of a reac’iant and two products in the mobik phase, respectively. If 
the rextam is cometied into products with rate coost;mts k,, in the mobile p&se gd 
k,, in the stationa,ry phase, the rxtss b&nce is described by the fotbwing eqtxation: 

where k, = k,, + k,, k,. The matrix t? becomes 

rka f ~(1 + k,) 

I 
0 

G= -k s(i + k-J 
-ka 0 

and from eqn. 6 the eigenmhxs of G ate obtained BS 
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As the input distribution of the re~tant,~~;fr), can be regzded as the Dirac &function 
for the puke-like introduction, then 

where M represents the amount of the reactant in a tit of d-function. By combin& 

where 

Ey solving these equations, it is possibre to discuss the effects of kinetic constants on 
the reaction chromatogmm. 

The zero moments (peak area) for the eIution curves due do the rextz.nt and 
the products are obtained from eqn. 15 as 



.If the solute present in 2 column nay undergo distribution with finite speed, 
:kc zxss b&axe eqaation invokes the mass transfer terns, leading to 

where c,, cz, - . . , C, denote the concentrations in the mobiIe phase and CrriLI . . . , 
CE thsse in the stationray phases. 

F&vided that there is no soWe in the cofurzli; zt f = 0 and the ith species as 
SL reactant is introduced into the mobile phase in the farm off:,Cf& the initial and 
boundary condition are reduced to 



Transforming eqn. i9 into the Lapface doma& and using the matrix representatioo, 
we obtain 

where EL is i&-order unit matris and 

As elation of solutes is observable only for Cc, Cz, _ . _ _ C, in the chromatogram, the 
terms CnGt. . _ _, C, are eliminated from eqn. 21 with the aid of Cramer’s rule, to 

. (23) 

C(s,O) = 2(s)* C(s,ca) = 0 

where 

and 



En ep. 24, ! K f SE, 1 i,. is the determinant of the sub-mat& obtained by efiminating 
the itli row anO jtb c&mm from the mmix K t s& The solution for eqn, 23 is 
czlcdated to givs 

c-c 3 ii STATICWW PFASE 

Fig_ 2. Noa-quiliietim pa-&ion modef. 



Therefore, the eigenvalues for B are obtained from eqn. 27 as 

Combining eqns. 31 and 32 with eqn. 28, then substituting the resulting Pi into eqn. 
26, we obtain 

Provided that the input distribution is regarded as the Dirac &functioa, then 
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rqxctively, where 

Finally, we emphasize that these results permit qzantitzth~e c.dtlc~&~tiions of the 
retsntion behaviour and pezk areas not only of reactants but also of praducts, the 
latter for the first time. 
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