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SUMMARY

The theoretical treatment of the elution profile in reaction chromatography by
the moment analysis technique is presented. The mass balance equations describing
linear chromatography (equilibrium and non-equilibrium) involving multiple phases
and multiple components are solved by means of the Laplace transform followed by
the projective resolution method. From the solutions, the zerc and the first normal
moments of the elution curves for both reactants and products are calculated.

INTRODUCTION

The use of a chromatographic column as a chemical reactor has been widely
applied in both analytical and kinetic investigations. Earlier work in this ficld has
been reviewed by Saha and Mathur?, Choudlay and Daraisway?, Van Swaary® and
Berezkin®. The theoretical aspects of reaction chromatography have also beer con-
sidered by many workers; Kogifik® used the mement analysis technique to elucidate
the elution profile of reaction chromatography, and obtained the zero to fourth sta-
tistical moments of the elution curve due to a reactant. Nakagaki and Nishino® and
Kallen and Heilbronner’ used plate theory in discussing the change of the positions
and shapes of chromatograms due to both reactants and products with regard to
variations in column characteristics. AH of these workers, however, based their work
on the idea that the reaction A — B takes place on z single stationary phase, and A
and B are distributed between the mobile and staticnary phases. However, in practice,
there can be many more species of products that are formed from a reactant molecule,
either reversibly or irreversibly and either simultaneously or successively. Also, there
must be more than two phases that can contribute to the reaction and the distribution
of these species; for instance, the mobile—stationary interphase, stationary liquid—solid
support interphase and solid support phase. In this paper, we have attempted to obtain
the moment equations for reaction chromatography involving multiple phases and

muitiple components.

EQUILIBRIUM SYSTEM

We first consider that reactants introduced into a cofumn underge chemical
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conversions to yield several types of products and all of the species present are distrib-
uted between the gas and stationary phases to establish instantaneous equilibrium. In
this instance, the following simultaneous partial differential equations can be estab-
lished:

(1+k;) 3G, [0t + u 8C,[3z = D 3Cyjaz* — X k,,C; |
=1

(14ks) 8CofBt + © 8C,[6z = D PC,foz* — X kG, (1)

(1 -+ky)8C, [0t + 10C,j6z = D &*C,fez> — X k. ;C;
i=t

where C,, C,, ..., C, are the concentrations of 1, 2, ..., # species in mobile phase,
respectively, &, &,, ..., k, denote their distribution ratios, D is effective diffusion
cozificient which is considered here to be constant for all species, and &; (7, f = |,
2, ..., n)is the rate constant of first order chemical reaction, « is carrier linear velocity,
¢ is time and z is column length coordinate. If there is no solute in the column at r =
0, and the input distribution of the /th species is expressed in the form, £,(¢), the initial
and boundary conditions can be given as

€0,2) =0, C(t.0) =1i(2), Gt} =0, (( =1, 2, ..., n) &
The application of matrix representation simplifies egns. | and 3 to

Kp 8C[at + u 8C|9z = D §C[3z> — Ex €

3}
C(O,Z) = Ga C(I,Q) = F(t): C(f,OO) =6
where
ks ks k.
koo ks ksn
KR ==




MOMENT ANALYSIS FOR REACTION CHROMATCGRAFHY 3

E- CL(E ,Z)
Cl([ ,Z)

C(t,z) =

ce ]
and

£t}
7))

F(r)y=

f(2)

The Laplace transform of eqn. 3 with respect to £ leads to the following ordinary dif-
ferential equation:

D d€dz? — ud€jaz — GC =6
- L 4
Cis,0) = F(s), Cls,00) = @ i

where s is the Laplace variable with respect to ¢, 5’(.;,2) and l:;(s) denote the Laplace
transforms of C(¢.z) and F(¢), respectively, and ¢ = Ky -+ s K. The solution of egn.
4 is given®® by

€2} = expifu/2p — Y (@f2DY + (G/DYiz}-Fis) ()

in which the exponential part becomes an (7 X r) matrix function that can be resolved

as described below. If G is given as a regular matrix (| G | = 03, its eigenvalues 2,
(=1, 2, ..., r), which are distinct from each other, are obtained by solving the

equation
G —iE,|=0 (6)

where E, is the nth order unit matrix and || denotes a determinant.
Then, with the aid of projective expression (Sylvester's theorem®), the expo-
nential term in eqn. S can be writien as

exp {u/2D — V(u/2Dy - (G’/D)}_} -
= X Poexp {[u/2D — V@2DY + (A/Dj)lz} (D)
1

=

where P; is the projective matrix for 4; and is given by the following equation:

(G—2LE)(G—1LE) --- cc'?-iz- E)(G—2,.Ey) -+ - (G—4.E) ®
(Fe—2) (Ry—2a) - - (lp—re_ 3 (4 “‘/;-H.} (;'i_]'n‘)

P, =
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Fig. 1. Equilibrium partition model.

In order fo obtain the explicit forms of the statistical moments from the solution of
eqn. 4, we now consider the example illustrated iz Fig. i, where C;, C; and C; are the
concentrations of a reactant and two products in the mobile phase, respectively. If
the reactant is converted into products with rate constants &, in the mobile phase and
k_. in the stationary phase, the mass balance is described by the following equation:

(1 = k)3C, /5t + u 8CyJ3z — D 32C,[3z* — k, C,
(I + E)3C,[3t - u 8C, 5z — D 3C,fa2* +~ k. C, ©
(I -+ ks)aC3/at - U EC;,/FJ‘Z =D 62C3/622 -+ ka CX

where k, = km -+ ks k. The matrix & becomes

Pk, +— s(l + &) ) )
G = l &, s(l 2+ &) 0 (10)
—E, o s( + k)t

and from egn. 6 the eigenvalues of & are obtained as

-

21=ka+s(1+k1)i{

Ay =s(1 + k) (tL)
A= 5(1 + k) ]

From egn. 8, the projective matrices 7;, P, and P; for 4,, 2, and 2; are written as

1 00 f O (URY; f 0 0o
P, = —kc/(i.!—iz}e()};&:l—ka,'(‘.l—).i} 1 0}, P, = o g0
—k,f(Ay — 253 0 O G g o £—k¢/(‘.- — i) 01
(12}
Substitution of egns. 11 and 12 inte egn. 7 leads to
al(2Dy=V (/2D + (GIDYE
&l wizBy~VET O )
= § k, {fen2Dy-Vaiz _ JaunD-valsy a3 fe2B- ik g
k, {eiu2DI-VET: _ 2B -VEEYA 4, 0 alizD3—Vaslz
(13}

where a, = (#/2D)Y* + 1,/D, a, = (/2D)* + 2,/D and a; = (uf{2D}* + %3{D.
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As the input distributfon of the reactant, £;(r), can be regarded as the Dirac d-function
for the pulse-like introduction, then

fre
Fs)y= lta} (14
0

where m represents the amount of the reactant in a unit of é-function. By combining
eqgns. 13 and 14 with egn. 5, we obtain

Cs.z) =m efw/2Dy— /2=

Co(s,2) = mke=/*P [e~"Var — g—=Var(fi, —i, (15)
Ci(s,7) = mk,e=/P [e==V3 — ==V [2;—2,
The inverse transforms of the above equations become *
N mzvV' A, uz By AP )
Clnz) = — e (55 — 7, i)
mzk, wsi2p o .
Cftyz) = ————— - &*¥ | — exp [k fe—7)/(kr—Fk)] -
2V Ak, —ky) ° VT
— B, A,z2 — By .22 .
[\/Al exp (—— . — —4_5_—} —-— \/Aze.\p (— --A—Z— — i }] dr (18}
- 4
Ceny = — e ewnn (L e e e—os— kDT
2Vl —ky) o vz
- Bt A2 — B £22 \ 1
Vv pl— 2 Y S4lexpf— =30 O3
[V exp 4, ) — VAexe ( 4, iz )Idﬂ
where
A ——

= (L - kD5 By = (#/2DY + k,/D
A, = (1 - k)/D; B, = (¢f2DY
s = (1 + &3)/P; By = (uj2Dy

By solving these equations, it is possible te discuss the effects of kinetic constants on

the reaction chromatogram.
The zero moments (peak area) for the elution curves due to the reactant and
the products are obtained from eqgn. 15 as

Moy = €1(0,2) = m exp{[(w/2D) — V{u/2DY = (k/D)I=}
My = Cx(0.2) = m(I — exp{[(uf2D) — V(uf2Dy - (k,/D)z}) an
My = Cy(0,2) = m(1 — exp{[@/2D) — V(@/2D)* ~ (k /D)}iz}) |
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and the first normal moments {retention time) as

fre = lim (—8/8s) In C, (5,2} = (1 +k)z/2DVTr .

50
tre = Hm {—3&fés) In Cy(s,2) = (&, —k,}k,
5—GC
. (I+E)zemV [2Dr — (E4ks) ze TPy
e—:%/r____ e~ us/zD 4 (ig)
I3 = lim (—0/35) In Ci(s.2) = (ky—ks}k.

s—§
. (A4-kpz e V2DV — (1+-ks) ze= 2Py
T

e~ Ve g—usi2D

where r = {¢/2D)* + (k,/P).

NON-EQUILIBRIUM SYSTEM

f the solute present in a2 column may undergo distribution with finite speed,
ti:c mass balance equation iInvolves the mass transfer terms, leading to

8C, /3t + u 8C,[3z = D &C,lo2> — X knyC; c (19)
J=i
£
BCne1fBt = — T knyy,C,
. i=z .
: o
F=:

where C;, C,, ..., C, denote the concentrations in the mobile phase and Crigs -+ -»
¢, those in the stationary phases.

Provided that there is no solute in the column at £ = 0 and the ith species as
@ reactant is introduced into the mobile phase in the form of £i{r), the initial and
boundary condition are reduced to

C0,2) = 0, C,(2.0) = £{e), Ci{t,oo} = G fori=1,2,....n
‘ (20
C0.2) =0, Ce )y =0 faré=n-+1, ... 1} .
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Transforming eqn. 19 into the Laplace domain, and using the matrix representation,
we obtain

D &2C,fdz* — udC,Jdz] o
D d2C,jdz2 — udC,ldz o

.

D d*C,/dz? — udC,jdz

C
= - ~ " 2
0 & +sE} o @
0 5::-:—2
B ¢ i &,
where E; is fth-order unit matrix and
Py ks -
Ky R 2%
k=1 : 22)
ki N T
As elution of solutes is observable only for C;, C;, .. .. C, in the chromatogram, the
terms Cpey. ..., Cp are climinated from eqn. 21 with the aid of Cramer’s rule, to
result in
B(p@*Cldz2 — udCldz) — C =0}
- - - -(23)
C(s,0) = F(s), C(s,00) = §
where
iK+SE€ll! —2K+SEZ§31 ...... (—i)'ﬁ_tlg—f—sEz{,:i
—IK+SEI;12-'- .
B= : [ {K + sE|
(D" K+ $E pneeeniininaa. VK + SE; | 2e J (24)
and
é:('gs:)
61(5,:)
C(s.2) = i

C(5.2)
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In egn. 24, | K + sE, | ,; is the determinant of the sub-matrix obtained by eliminating
the ith row and jth column from the matrix I; —+ sE,. The solution for eqn. 23 is
czlculated to give

C(s,2) = exp{[{ej2D) — V' (@J2BY + (B~ D)z} F(s) 25)

where B! is the inverse mawrix of B.
In the same manner as described in egn. 7, the exponential part of eqn. 25 is
defined by

exp{ [@2D) — VDY + & /D)};} -
f P, exp {[/2D) — v(@2Dy F DBz} 26)

where 2, is the ith eigenvalue of matrix B, which is obtained by solving the equation

|B—ZE,|=0 eh

_(B—A4LENB—LE) - (B—4 E)(B—4..E) - (B—Z.E,)
(Ri—A) (A—2) - - B2y (Ar—2i ) - (A4

(28}

T,  FOBILE PHASE

G—=(, STATIORARY PHASE
Fig. 2. Non-cguilibrium partition model.

As zn zactusl case of non-equilibrivm chromatography, we now consider a
mecdet as shown in Fig. 2, where k,_, k.., k., and k,, are the rate constants of solute
transfer between the phases. In this instance, the mass balance can be described by

8C,/8¢ + u 8C,J3z — D 32C,[32* — ky.Cs — ko nCp - fcﬂcz%

0C,/0t + 1 8C;[8z = D 8°C,[82% — k€, - koCy + kCil (29)
eCs/0t = LISCE k.Cs — k. C; i -
9C [0t = ko .Cs + £y Cy — kT, l

By Laplace transformation of eqn. 29 with respact to ¢ and applying the resuit to egn.
21, it is found that

Kis +Kom + s g —k, g
K +LsE= k. /P 0 —~k s
—kye G By +k,.+ s a GO
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From eqn. 24

¥K+SE§H_ —§K+SE£21
B:

) ‘[/’K—{—SEi (31}
— |KE+5sE|s |K +~sEl;

where
} K ":_ § E == S(kZS + k:z + S)[(k_!: —L kam ":— S)(ksl + kas + S) - ksikls]

B+ sE\; = sty + kos + 5)lose + ko + 5)

K —:‘ § E 31 — 0

K-+sE i1z = _kam(ksl -+ k&zs + S)(ksz -+ S} - klskasksz

K-+-sE !22 = (kys + kom + Moy + koe + ) ha + 5 — kok (k. + s)
Therefore, the eigenvalues for B are obtained from eqn. 27 as
A=|K+sE|,
(32}
;;2 - 2 K + S E 122

Combining eqns. 31 and 32 with eqn. 28, then substituting the resulting P, info egn.
26, we obtain

elw/2By—V@wi2D)2 « (BE=LDH=

el(z/20)— Vaz(s)l= o
— [ o __ ] (33)
a,u(s) {e[(mZD)— Vaylsil= __ e[(::!zD}—\/clz(s}I:I e[(u/ZD)—\/azz(r)I:
where
H 4 Fod
¢ 2, lK - 8 ﬁl
(s} (1f2D)* - D gK s Egn
|K + s E}
— }! 2 1 H
QZZ{'S) (lé', ZD) 1 D }K+ SE}::
{K + s El;»

ai.’.{s} = iK-%—SE}zz _ gK'—:— SE¥:L

Provided that the input distribution is regarded as the Dirac é-function, then

F(s) = E'g ] (34)

By using egns. 33 and 34, the transformed solutions can be obtained frem eqgn. 25:

Cils.z) = m exp{[@/2D) — Va, (s} 59
N 35
51(-9:3} = m a,(s)exp{l(@/2D) — Va;(s)i=z } — exp{{(E/2D} — Va,(s}iz})
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From these eqguations, the zero and first normal moments for the reactant and the
product are calculated, finzlly leading to

Moy = m exp {20 — Van(0)iz}

—_ (36)
Mo = m{t — exp{i(/2D) — Ve (0=}
and
foy = z a;,(0)
R: & —7‘__.‘“
2V a, (0} (37)
e k) - 2t oy
try = = :(0)/2V a:,(0} + 511(?2/ 2Va,(0) v 2D 1 g;,(0) {
1 — exp {{x/2D) — Va, ()=}

respectively, where

, kiskes
@u(0) = Wi2DP + (Ko + 55D
322(0) - (U/ZD}Z
k.k

, — §1 o fstfis
an® = [1 + =55l

. k’s + % a2
a20) = =5

klsksl + kslkls - i{S!kZS ":— kaskzs s kczskzs - klskstksz

52'!2(0) = ksz(klskas —r krzmksl + k::zr.kczs‘}

Finally, we emphasize that these results permit quantitative calculations of the
retention behaviour and peak areas not only of reactants but also of products, the
latter for the first time.
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